
Registration Service
Group 6

Yavik Kapadia & Saul Mendoza-Loera

Software Requirements Specification

Document

Version: 1 Date: 04/18/2023



1.1 System Environment

The learning management system has two services which have 3 actors and the
services communicate with each other through a message queue. Students are able to add and
drop courses, admins are able to add students as well as add or remove holds from student
accounts, lastly Instructors are able to create, update,and remove assignments and grades.
When students enroll in a course this enrollment information is passed to the gradebook service
to update its enrollment table.



1.2 Functional Requirements

1.2.1 Administrator Use Case

Use Case Name Add a student

Trigger Admin presses Add student button

Precondition Admin has to be signed in and on the index
page

Basic Path 1. Admin clicks on add student.
2. Frontend presents admin with add

student dialog.
3. Admin enters valid student email and

name.
4. System checks where the student is in

Database or not
5. If no student found, the system adds a

new student to the database
6. Presents a success toast message to

Admin

Alternative Paths For step 3 if any of the information is missing
an error toast will be presented

Postcondition Student has been added and a success toast
message is displayed

Exception Path Admin may cancel adding new student

Other

1.2.2 View schedule

Use Case Name Student Views Semester Schedule

Trigger Students select a radio button for a specific
semester and presses Get Schedule

Precondition Student has to be logged in and enrolled in
courses for a semester

Basic Path 1. Students select the radio button for
the semester they are trying to view
the schedule for.

2. Then press get schedule
3. The system will get all the course the

student is enrolled in for that particle



semester and year.

Alternative Paths None

Postcondition Students are presented with this schedule.

Exception Path Student may not click get schedule

Other The schedule may be empty if the student is
not enrolled in any courses

1.2.3 Enroll in a course

Use Case Name Student enrolls in a course

Xref 1.2.2 view schedule

Trigger Students select a radio button for a specific
semester and presses Get Schedule

Precondition Student has to be logged in and has no holds
for registration

Basic Path 1. Student gets schedule for a specific
semester they are cleared to enroll for

2. Student click on Add course button
3. Student enter valid course id
4. Student clicks Add button
5. On success student is presented with

success toast message, dialog closes
6. Newly enrolled course is visible on

schedule

Alternative Paths At step 3, students may enter incorrect or
invalid course id which will trigger an error
toast message.

Postcondition Students are presented with their schedule.

Exception Path Students may not click get schedule.
Students may select a semester they are not
cleared to enroll in.

Other



1.2.4 A student drops a course

Use Case Name Student drops a course

Xref 1.2.2 view schedule, 1.2.3 Enroll in a course

Trigger Student clicks Drop button next to a course

Precondition Students have to be logged in and have
courses enrolled in.

Basic Path 1. Students click the view schedule for
a valid semester they can drop
classes from.

2. Students then click the drop bottom
next to a course.

3. Students are then prompted to click
cancel or ok to confirm whether they
want to drop course.

4. A success toast will be displayed
upon success.

Alternative Paths At step 3, student may click cancel to not
drop the course.

Postcondition Students are presented with their schedule
without the course that was dropped.

Exception Path Students may not click get schedule.
Students may select a semester they are not
cleared to drop courses from.

Other Additionally if drop date has passed students
may not be able to drop courses



1.3 Non Functional Requirements

1.3.1 Performance

Ideally the frontend and backend services should have multiple instances running across
multiple servers and be behind a load-balance that can route requests to different instances
depending on traffic. Considering that thousands of students will be accessing these services
when class registration opens up thus our application needs to be able to handle thousands of
requests at any given second.

1.3.2 Security

The registration backend should adhere to the following security requirements:
● Only authorized users should be able to access the API endpoints.
● Only authenticated admins are able to edit student information or add students.
● User authentication should be handled securely and should not be vulnerable to

common attack vectors such as SQL injection or cross-site scripting.
● All communication between the client and server should be encrypted using HTTPS.
● The system should log all user actions for auditing and debugging purposes.
● The system should be regularly tested for vulnerabilities and weaknesses.

1.3.3 Browsers and Minimum requirements

The frontend of this service is designed using React which is designed and tested for recent
mobile and desktop browsers, for touch and mouse and keyboard interactions.
The browsers with known support include:

● Google Chrome: version 80 and above
● Mozilla Firefox: version 72 and above
● Apple Safari: version 13 and above
● Microsoft Edge: version 80 and above



1.4 Logical database diagram and accompanying details on tables, keys,
and attributes

1.4.1 Registration Database



1.4.2 Student Data Table

Student Data Table

Data Item Data Type Description Comment

student_id int Unique id for student

name varchar(255) Name of student

email varchar(255) Student email

status varchar(255) Hold type, reason

status_code int Integer code
associated with hold
type

1.4.3 Course Data Table

Course Data Table

Data Item Data Type Description Comment

course_id int Unique id for course

year int Year of semester

semester varchar(10) Semester Fall, winter, spring,
summer

section int Section of course Allows for multiple
instances of a course

title varchar(255) Name of the course

times varchar(50) Days and times
course is being
taught

building varchar(20) building

room varchar(20) Room in building

instructor varchar(50) Instructor that is
teaching a course

start date Start date of course

end date End date of course



1.4.4 Enroll Data Table

Enrollment Data Table

Data Item Data Type Description Comment

student_id int Unique id for student Foreign key from
student table

year int Year of semester

semester varchar(10) Semester Fall, winter, spring,
summer

course_id int Section of course Foreign id from
course table

course_grade varchar(255) Student grade Grade reported from
gradebook

enrollment_id varchar(50) Unique id for a
specific students
enrollment in course


